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Oxidation of silicon by oxygen: a rate equation 

ROBERT H. D O R E M U S ,  A N D R E W  SZEWCZYK*  
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180, 
USA 

A new rate equation fits data on the oxidation of silicon by oxygen. It can be derived from a 
model of molecular diffusion in the oxide layer and the influence of strain on this diffusion. 

1. Introduction 
The oxidation of silicon is a vital part of making 
electronic components; a better understanding of the 
mechanisms of oxidation would improve the process- 
ing and properties of devices. A widely used relation 
between the thickness L of an oxide layer and oxida- 
tion time t at a constant temperature is the linear- 
parabolic equation 

L 2 + AL = Bt (1) 

in which A and B are parameters not dependent on 
thickness or time. In their pioneering work Deal and 
Grove [1] found good agreement between Equation 1 
and the oxidation of silicon by water, and other 
workers have confirmed these results. 

When silicon is oxidized by dry oxygen, Equation 1 
is not followed, especially at early times. To account 
for this discrepancy Deal and Grove [1] introduced an 
additional parameter ~, giving an equation with three 
adjustable parameters: 

L 2 + AL = B(t + r) (2) 

However, thicknesses of silica films formed on silicon 
by oxygen do not fit Equation 2 at early times, as 
shown in Fig. 1. Furthermore, there has been no 
satisfactory explanation of the experimental values 
of r. 

The main purpose of the present paper is to propose 
an equation with three adjustable parameters that can 
be fitted to all experimental results on the oxidation of 
silicon. This equation is 

L2+ A L -  A C l n ( 1  + C )  = Bt (3) 

with parameters A, B and C. Methods of fitting experi- 
mental data to this equation are discussed in the next 
section, and then some calculated parameters for 
selected experimental results are listed. A theory of 
oxidation is then described that results in Equation 3. 
A detailed consideration of theoretical parameters 
and their comparison with experimental data is not 
included in this paper. 

2. Fitting equat ions  to data 
A useful graph for comparing experimental data with 
Equation 3 is that of log L against log t. Some experi- 
mental data on such a plot are in Fig. 2, and calcula- 
tions from Equations 2 with particular parameters A, B 
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and C are in Fig. 3. In both experimental and calcu- 
lated results the log L against log t plots are linear. 
This comparison gives support to the validity and use- 
fulness of the empirical functional form of Equation 3. 
Fig. 3 shows that the slope of the log L against log t 
plot depends on the ratio A/C of parameters in 
Equation 3. Thus the log L against log t plots provide 
a convenient way to determine this ratio, and can 
reduce the number of parameters to be determined by 
direct fitting to two. A convenient form of Equation 3 
for calculation of these slopes is in terms of the dimen- 
sionless thickness L/C: 

+ ~ + ~ l n  1 + = ~-5 (4) 

Calculations in this form are in Fig. 3. Values of slopes 
on log L against log t plots for different values of A/C, 
as calculated with Equation 4, are in Table I. A graph 
based on Table I can be used to determine A/C from 
experimental plots of log L against log t. 

Fitting of Equation 3 to experimental data is not 
simple, even if the A/C ratio is known, because the 
equation is non-linear in the parameters to be deter- 
mined (B and A or C). Various direct non-linear 
regression methods [2] were tried to fit the data, but it 
was not possible to arrive at reliable values of the 
parameters with the available experimental data, 
because of the lack of sensitivity of the minimization 
process on the parameters. 

An alternative method is to calculate values of t for 
measured values of L for many assumed sets of para- 
meters with a computer. A software package [3] was 
used to make such calculations, and then the set of 
parameters for the sum of deviation squares were 
chosen. If  ~. is a time calculated from Equation 3 for 
an experimental Li value, and ti is the experimental 
time, then the sum of squares is 

Z - 0 2 (s) 
i 

A necessary assumption for the validity of a regres- 
sion calculation is that the variance in the testing 
variable is constant [4]. The variance in time values is 
estimated by (~ - tg) 2 for each time t~ at which thick- 
ness is measured. A sample of calculations is given in 
Table II for a particular set of parameters A, B and C. 
The data in the table were taken from two separate 
investigations [5, 6] of the oxidation of silicon in 1 atm 
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Figure 1 Thickness of  SiO2 layer on silicon with time of  
oxidation in 1 atm oxygen at 1000 ° C. (o) Data of  Deal 
and Grove [1]; upper line, calculated from Equation 2 
and parameters given by Deal and Grove [1]; lower line, 
from Equation 3 with parameters in Table III. 

Figure 2 Log (thickness) of  SiOz layers on 
silicon as a function of  log (time) during 
oxidation in 1 atm oxygen. (o)  At 900°C 
data from Table II; (zx) at 800 ° C, data 
from Massoud [6] and Deal and Grove [1]. 
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4 . 5  

Figure 3 Dimensionless thickness 
L/C as a function of  dimension- 
less time, log- log plot. From 
Equation 3 (O) A/C = 10, (zx) 
A/C = 40. 



T A B L E  I Slopes of logL  against logt  plots as a function of  
A/C 

A / C Slope 

2 0.53 
5 0.57 

10 0.60 
15 0.62 
20 0.64 
40 0.69 

T A B L E  II  Deviations of  times calculated from Equat ion 3 
and experimental times for oxidation of  (1 1 1) silicon in 1 a tm 
oxygen at 900°C 

Experimental Calculated ~ - t log/" - log t 
time, i (min) 

Time ti Film (rain)* 
(rain) thickness 

(nm) 

Data 
0 
5 

10 

oxygen at 900°C to provide values over a wide range 15 
of times and oxide thicknesses. At one hour the two 20 
investigations found layer thicknesses of  29.3 and 30 

40 
29.5 nm, respectively. Table II  shows that the residual 50 
values (/, - ti) are approximately proport ional  to ~ 60 
values. Thus the variance in t is not constant, but is 8o 
roughly proport ional  to (t,) 2. For  this functionality Data 

the time variables must  be transformed to log t to give 60 
a constant variance [4]. The residuals (log f~ - log ti) 240 

420 from such a t ransformation are also shown in Table II  
96O 

and are plotted in Fig. 4, which shows that for this 1500 
transformation the residuals and therefore the vari- 3890 
ance (log fi - log ti): has no trend as a function of  
log f~. Thus the sum of squares that must be minimized 
for a best fit is 

(log ~ -- log t , )  2 (6) 
i 

Experimental measurements of  oxide layers on sili- 
con show that an oxide layer about  1 to 2 nm thick is 
present on cleaned silicon surfaces [6]. This initial 
thickness L 0 can be included in Equation 3 as follows: 

Bt  

L 2 -- L~ + A ( L - -  Lo) 

[~ + (L/O ] 
- -  A C l n  - ~_ ~ - - ~ - ) j  = 

= Bt (7) 

L2÷AL At,n(, 

[L0 ÷ AL0 At'n(1 + 

o r  

of  Massoud [6] 
1.2 
5.8 
9.0 

12.1 
15.0 
19.0 
22.2 
26.4 
29.3 
36.6 

of  Deal et al. [5] 
29.5 
66.2 

100 
166 
224 
398 

4.1 - 0 . 9  - 0 . 0 8 6  
9.1 - 0 . 9  -0 .041  

15.1 +0.1  +0.003 
21.6 + 1.6 + 0.039 
31.9 + 1.9 + 0.027 
40.9 + 0.9 + 0.010 
54.0 + 4 + 0.033 
63.5 + 3.5 + 0.025 
90.0 + 1 0  +0.051 

224 - 16 - 0.030 
415 - 5 - 0.005 

(960) 
1571 +71  +0.020 
4238 +398  +0.052 

*Fitt ing parameters in Equat ion 3: A = 0.15#m, B = 
0.003#m2h -~, C = 0.01 #m, L 0 = 0.0012pro. B found by match- 
ing calculated and experimental data at 960 min. 

where the term in square brackets is not a function of  
L or t. In fitting the equation the term in square 
brackets must of  course be calculated for each pair of  
A and C values. This term is necessary only for thick- 
ness measurements below about  0.05 #m. 

Logarithmic terms have been included in previous 
rate equations for the oxidation of  silicon [7-9], 
especially for oxidation by water and oxygen mixtures 
[8, 9]. The form of these equations was different f rom 
that of  Equation 3, and Irene and Ghez [9] concluded 
that the logarithmic term " accounted for only a few 
percent". The logarithmic term in Equation 3 can be 
of substantial importance, especially for the thinner 
films. 
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Figure 4 Residuals ( l o g / ' -  log t) of  experimental 
times t and t imes/ 'calculated from Equation 3 with the 
parameters in Table II. 
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T A B L E  I I I  Calculated parameters A, B and C in Equation 3 
for the oxidation of  silicon by oxygen 

Temperature A/C A C B Data 
(° C) (#m) (pm) ~ m  2 h -  l ) references 

1200 small - - 0.042 [1] 
1100 4 0.11 0.027 0.022 [1] 
1000 13 0.09 0.007 0.0086 [5] 
900 17 0.07 0.004 0.0024 [5, 6] 
800 26 0.07 0.0027 0.00054 [1, 6] 

3. C a l c u l a t i on s  f rom e x p e r i m e n t a l  data  
To show the validity and usefulness of  Equation 3, 
experimental data for the oxidation of  silicon by 
oxygen at different temperatures were fitted with the 
equation, and the resulting parameters compared with 
those of previous investigations (see Table III). At 800 
and 900°C the data of different investigators were 
combined to give a wider range of layer thickness. At 
these temperatures there was overlap and close agree- 
ment at intermediate times and thicknesses, as shown 
in Table II. The parameters in Table III were taken 
from minimum values of the sum of squares of 
Equation 6. 

The values of  the coefficient B are plotted in Fig. 5. 
At the highest temperatures (1200 and 1100 ° C) the 
slope corresponds to an activation energy of  about 
26kcalmol  -] (109kJmol- l ) ,  which is close to the 
measured value of 27 kcal mol-  1 (113 kJ mol -  l) by 
Norton [10] for the diffusion of molecular oxygen in 
vitreous silica, and the absolute value of B corre- 
sponds to the calculated one [11]. At lower tem- 
peratures the values of  B become lower than expected, 
and are also lower than the values reported by Deal 
and Grove [1]. A very similar anomalous decrease in 
B values occurred for the oxidation of silicon by water 
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Figure 5 Log B, the parabolic rate parameter, as a function of  1/T: 
(O) calculated in the present work, (zx) reported by Deal and Grove 

Ill. 

[12], and was explained as resulting from strain in the 
silica layer [13]. It seems likely that a similar explana- 
tion is valid for oxidation of  silicon by oxygen. 

The values of  the parameter A in Table III increase 
somewhat with increasing temperature, and are per- 
haps nearly constant. The ratio B/A is often con- 
sidered as the "linear coefficient" and is found to give 
a linear plot of log(B/A) against lIT. The results in 
Table III do not give this temperature dependence of  
B/A, and raise doubts about the significance of activa- 
tion energies calculated from B/A values. 

The values of the parameter C increase with tem- 
perature by about an order of magnitude from 800 to 
1100 ° C. Detailed discussion of the theoretical signifi- 
cance of the parameters A and C is reserved for 
future work. A start is given in the next section in 
which Equation 3 is derived from a model of the 
influence of  strain on molecular diffusion in the silica 
layer. 

It is difficult to fit the experimental data reliably to 
a non-linear equation such as Equation 3; many sets 
of  parameters A, B and C give nearly the same sum of 
squares of deviations. It would be very desirable to 
have experimental results of a particular experimental 
arrangement over a wide range (10nm to 5#m?) of 
layer thicknesses. 

4. Equations for stra in- inf luenced 
oxidat ion 

The linear-parabolic Equation 1 can be derived by 
assuming that there are two processes involved in 
oxidation, diffusion through the oxide film and a 
chemical reaction at an oxide interface. For  water or 
oxygen as oxidants many experiments have established 
that the oxide grows at the silicon-oxygen interface, 
so the oxidant must diffuse through the oxide layer to 
the silicon. This diffusion process has been modelled 
as resulting from the diffusion of molecular water or 
oxygen through the amorphous silica layer [11]. This 
mechanism has been confirmed by a variety of inde- 
pendent experiments, and is widely accepted [14, 15]. 
In this model the diffusion coefficient D of  oxidant 
through the oxide is related to the parameter B by 

B = 2CLD/O (8) 

in which CL is the concentration of molecular oxygen 
or water dissolved in the silica at the silica-gas inter- 
face and ~ is the density of  the oxide in the same 
concentration units. Strain in the oxide layer influ- 
ences the molecular diffusion of oxygen or water in the 
layer. Modified expressions for A and B for water and 
oxygen are derived below, and an additional para- 
meter C for the oxidation of silicon in oxygen is intro- 
duced in place of ~ in Equation 2. References and 
more details for the derivation are given elsewhere 
[131. 

It is assumed that there is a compressive strain in the 
oxide layer that decreases linearly from the silicon- 
oxide interface to the oxide-gas surface, where the 
strain is negligibly small. The strain e is then 

where e0 is the strain at the oxide-silicon interface 
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(X = 0) and Xis the distance from this interface in the 
oxide layer. 

It is also assumed that the diffusion coefficient D of 
molecular oxygen or water in the oxide depends on the 
exponential of the strain: 

D = D L exp ( -  ke) (10) 

where D L is the diffusion coefficient when there is no 
strain (X = L), and k is a parameter measuring the 
sensitivity of the diffusion coefficient to strain. In 
transition state theory k = EV*/RT, where E is 
Young's modulus and V* is an "activation volume". 

The distance-dependent diffusion coefficient of 
Equation 9 is now used in the equations for the 
diffusion-controlled growth of an oxide film. It is 
assumed that the concentration of oxygen or water 
dissolved in the oxide at the oxide-gas surface is held 
constant at the value cL by oxidant in the gas phase, 
and the concentration at the silica-silicon interface is 
small, effectively zero. 

Furthermore a steady-state diffusion profile results, 
because the film grows slowly compared with the dif- 
fusion time in it. The constant flux J of  oxidant 
through the film is 

dc E (  );dc 
J = D d X  - DLexp -keo 1 - dX 

(11) 

where c is the concentration at distance X from the 
oxide-silicon interface. To find the concentration 
profile in the oxide, Equation 11 is integrated with the 
boundary condition c = cL at X = L to give 

c 1 -- exp (--ksoX/L) 
- ( 1 2 )  

cr 1 -- exp ( - k e 0 )  

This equation gives an exponential profile of  con- 
centration with distance X in the oxide. The flux is 

j = CLDLkSo (13) 
L[exp (keo) - 1] 

If keo ~ 1, the exponential can be expanded and only 
the first three terms used, so that 

Cz DL keo CL Dc 
J ,.~ = 

L[keo 4- (k~:o)2/2] L[1 4- (keo/2)] 

(14) 

Since the flux J = Q (dL/dt), the differential equation 
for film growth with strain is 

dL CLD L 
- ( 1 5 )  

dt L[1 + (keo/2)]e 

For cuprous oxide (Cu20) films on copper, Borie 
eta[. [16] found that the value of e0 in Equation 9 
became smaller as the film thickness increased; e0 was 
inversely proportional to film thickness for films of  
thickness from 1.4 to 4.4 nm. It is assumed therefore 
that ~0 depends on film thickness in this way: 

( ' )  ~0 = 2q 1 + L 4-------C (16) 

where q is a dimensionless coefficient and l and C have 

dimensions of  length. Substitution of EquMion 16 into 
Equation 15 gives 

dL CLDL/~ 
- ( 1 7 )  

dt L(1 + kq) + [kqlL/(L + c)] 

Integrating Equation t6 from L = 0 at t = 0 gives 
Equation 3, with the coefficients A, B and B/A equal to 

2ILDL 
B - (18) 

0(1 4- kq) 

2kql 
A - (19) 

1 4-kq 

B CLDL 
- ( 2 0 )  

A okql 

At a particular temperature the coefficients B and 
B/A are proportional to CL in Equations 18 and 20, 
and hence to the partial pressure of  oxygen or water in 
the gas phase as found experimentally for the oxida- 
tion of silicon. 

If kq ~ 1 (strain effects are small), B = 2cLDL/o 
and A = 2kql. These relations are valid for the oxida- 
tion of silicon above about 950 ° C for water oxidation 
and about 1100°C for oxidation by oxygen. In these 
temperature ranges the activation energy of  B for 
oxidation of  silicon by water or oxygen is equal to the 
activation energy for molecular diffusion of these 
gases in bulk vitreous silica [2]. 

At lower temperatures the factor B for the oxida- 
tion of  silicon by water [12] and oxygen (present work) 
is lower than expected from Equation 8; in bulk 
vitreous silica there is no corresponding change in the 
activation energy for the diffusion of  water. Further- 
more there is no anomalous decrease in B/A for water 
at these temperatures [12]. Equations 18 and 20 give 
an explanation for these results. At lower tem- 
peratures strain effects become important and the 
factor kq becomes significant compared with unity. 
Then B is smaller than expected without the kq factor, 
but B/A still has the same temperature dependence. A 
quantitative comparison between experimental and 
calculated values of  B is given elsewhere [13] and 
shows good agreement. 
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